

Reduced Complexity Blind Compute-and-Forward Student: Daniel Severo Advisor: Danilo Silva, PhD Federal University of Santa Catarina Technological Center - Department of Electrical and Eletronic Engineering Laboratory of Communications and Embedded System

Abstract

The objective of this work is to understand and improve a wireless non-coherent transmission scheme, that is, with no knowledge of the effect that the channel has on the signals. This is known as Blind Compute-and-Forward, and its coherent counterpart is denoted as Compute-and-Forward. The contribution of this research will be to lower the complexity of decoding algorithms already implemented in [1]. Also, we aim

Compute-and-Forward [2]

In its simplest form, with L users, C&F consists of a scheme where an intermediator receives a signal $\mathbf{y} = \sum_{\ell} h_{\ell} \mathbf{x}_{\ell} + \mathbf{z}$, where $\mathbf{h} = [h_1, ..., h_L]$ are the flat-fading channel coefficients, \mathbf{x}_{ℓ} are signals chosen from a nested lattice code and z is AWGN. For decoding, a scaling factor α is calculated using the information of **h** and $\mathbf{a} = [a_1, ..., a_L]$.

to contribute with new theoretical information regarding the transmission scheme.

Network Coding

3 time slots

2 time slots

 $\alpha = \frac{\mathbf{a}\mathbf{h}^H}{\|\mathbf{h}\|^2 + 1/\mathrm{SNR}}$

Blind Compute-and-Forward [1]

The central idea of Blind $C \mathscr{E} F$ is that we do not need the optimal value of α for each **a** and **h**. A good scalar will suffice for decoding. For a specific class of nested lattice codes, [1] proposes a computationally efficient algorithm to determine if a given α is good or bad.

Smoothing Lemma: Let **n** be an i.i.d circularly-symmetric complex Gaussian random vector with mean μ and variance σ^2 . Let f_{Λ} be the probability density function of **n** mod Λ . The Smoothing Lemma says that **n** mod Λ tends to be uniform over the Voronoi Region of Λ as σ grows.

Lattice Decoding (4-QAM)

Algorithm:

- 1. For a given α , calculate $\mathbf{y'} = \alpha \mathbf{y} \mod \Lambda$;
- 2. Calculate the sample variance of y';
- 3. Decide if α is good based on some predefined threshold δ .

The Optimization Problem

Algebraic Properties of f

- 1. All good scalars are bounded by $|\alpha|^2 <$ $SNR/2^{R}; [1]$
- 2. The region of good scalars consists of a union of disks. These disks are pairwise disjoint if the message rate $R \geq 2$; [1]
- 3. The function f has an underlying lattice structure which can be seen clearly for L = 1 (1 user);
- 4. The best and second best α 's are a basis for the lattice that contains all other optimal scalars ...

References

1. C. Feng, D. Silva, and F. R. Kschischang, "Blind compute-and-forward," in Proc. of IEEE Int. Symp. on Inf. Theory, Cambridge, MA, Jul. 1–6, 2012, pp. 408 - 412.

2. B. Nazer and M. Gastpar, "Computeand-forward: Harnessing interference through structured codes," *IEEE Trans.* Inf. Theory, vol. 57, no. 10, pp. 6463–6486, Oct. 2011.

real(α)